Weekly Overview: This Week in Computer Science Papers – December 15, 2025
Key Takeaway
The weekly overview “This Week In Computer Science Papers” showcases a broad range of current research papers, with a strong focus on Computer Vision, Artificial Intelligence, and Hardware Verification.
Summary
• Papers Overview
– Total papers displayed: 36 of 345 that week.
– Main categories and counts:
- Machine Learning (cs.LG) – 108
- Computer Vision and Pattern Recognition – 106
- Artificial Intelligence – 77
- Computation and Language – 43
- Robotics (cs.RO) – 33
- Cryptography and Security – 19
- Information Retrieval – 17
- Computers and Society – 12
- Information Theory (cs.IT) – 12
- Software Engineering – 12
- Distributed, Parallel, and Cluster Computing – 11
- Hardware Architecture – 8
- Graphics (cs.GR) – 7
- Human-Computer Interaction – 7
- Computational Complexity – 6
- Computational Engineering, Finance, and Science – 5
- Data Structures and Algorithms – 5
- Computer Science and Game Theory – 4
- Multiagent Systems (cs.MA) – 4
- Sound (cs.SD) – 4
- Computational Geometry – 3
- Discrete Mathematics (cs.DM) – 3
- Logic in Computer Science – 3
- Networking and Internet Architecture – 3
- Databases (cs.DB) – 2
- Emerging Technologies – 2
- Multimedia (cs.MM) – 2
- Performance (cs.PF) – 2
- Social and Information Networks – 2
- Digital Libraries (cs.DL) – 1
- Formal Languages and Automata Theory – 1
- Mathematical Software – 1
- Neural and Evolutionary Computing – 1
- Operating Systems (cs.OS) – 1
- Programming Languages – 1
- Symbolic Computation – 1
Highlighted Papers (since December 15, 2025)
- DiffusionBrowser – Interactive preview of video diffusion models: lightweight decoder, >4× real‑time, allows control of generation process via stochastic injection and modal control. Systematic analysis of the denoising process.
- LitePT – Lightweight, more powerful Point‑Transformer: convolution in early layers, attention in deep layers, combined with PointROPE‑Encoding. 3.6× fewer parameters, 2× faster, 2× less memory, matches or surpasses Point‑Transformer‑V3.
- VTP (Visual Tokenizer Pre‑training) – Scalable pre‑training for visual tokenizers: combines image‑text contrastive, self‑supervised, and reconstruction losses. Produces semantically compact latent spaces, shows significant gains in generation (FID optimisation, faster convergence).
- Lyra – Hardware‑accelerated RISC‑V verification framework: FPGA‑SoC with ISA‑aware generative model (LyraGen). Increases coverage by 27 % and speeds up verification 107–3343× vs software fuzzer.
- Semantic Analysis for Alzheimer’s Diagnosis – Pipeline to examine semantic cues in speech samples: syntax‑ and vocabulary‑transformed texts retain semantics, models can detect AD even with major structural changes.
- Recurrent Video Masked Autoencoders (RVM) – Recurrent transformer for spatio‑temporal video representations: efficient masked prediction, 30× parameter‑efficient compared to VideoMAE/V‑JEPA, stable feature propagation over long horizons.
How the Overview Works
– Hover tile shows abstract preview; click opens detail page.
– Sidebar filters enable search by category.
– Highlights progress in ML, Vision, AI and Hardware.
Related Queries
Welche Fortschritte wurden mit DiffusionBrowser bei der Interaktion mit Video‑Diffusion-Modellen gemacht?
Wie verbessert LitePT die Effizienz und Performance von 3D‑Point‑Cloud‑Netzwerken?
Welche Erkenntnisse liefert VTP hinsichtlich des Pretrainings von Visual Tokenizers für generative Modelle?
Source: https://www.weekinpapers.com/
