home

Weekly Overview: This Week in Computer Science Papers – December 15, 2025

Key Takeaway

The weekly overview “This Week In Computer Science Papers” showcases a broad range of current research papers, with a strong focus on Computer Vision, Artificial Intelligence, and Hardware Verification.

Summary

Papers Overview
– Total papers displayed: 36 of 345 that week.
– Main categories and counts:

  • Machine Learning (cs.LG) – 108
  • Computer Vision and Pattern Recognition – 106
  • Artificial Intelligence – 77
  • Computation and Language – 43
  • Robotics (cs.RO) – 33
  • Cryptography and Security – 19
  • Information Retrieval – 17
  • Computers and Society – 12
  • Information Theory (cs.IT) – 12
  • Software Engineering – 12
  • Distributed, Parallel, and Cluster Computing – 11
  • Hardware Architecture – 8
  • Graphics (cs.GR) – 7
  • Human-Computer Interaction – 7
  • Computational Complexity – 6
  • Computational Engineering, Finance, and Science – 5
  • Data Structures and Algorithms – 5
  • Computer Science and Game Theory – 4
  • Multiagent Systems (cs.MA) – 4
  • Sound (cs.SD) – 4
  • Computational Geometry – 3
  • Discrete Mathematics (cs.DM) – 3
  • Logic in Computer Science – 3
  • Networking and Internet Architecture – 3
  • Databases (cs.DB) – 2
  • Emerging Technologies – 2
  • Multimedia (cs.MM) – 2
  • Performance (cs.PF) – 2
  • Social and Information Networks – 2
  • Digital Libraries (cs.DL) – 1
  • Formal Languages and Automata Theory – 1
  • Mathematical Software – 1
  • Neural and Evolutionary Computing – 1
  • Operating Systems (cs.OS) – 1
  • Programming Languages – 1
  • Symbolic Computation – 1

Highlighted Papers (since December 15, 2025)

  1. DiffusionBrowser – Interactive preview of video diffusion models: lightweight decoder, >4× real‑time, allows control of generation process via stochastic injection and modal control. Systematic analysis of the denoising process.
  2. LitePT – Lightweight, more powerful Point‑Transformer: convolution in early layers, attention in deep layers, combined with PointROPE‑Encoding. 3.6× fewer parameters, 2× faster, 2× less memory, matches or surpasses Point‑Transformer‑V3.
  3. VTP (Visual Tokenizer Pre‑training) – Scalable pre‑training for visual tokenizers: combines image‑text contrastive, self‑supervised, and reconstruction losses. Produces semantically compact latent spaces, shows significant gains in generation (FID optimisation, faster convergence).
  4. Lyra – Hardware‑accelerated RISC‑V verification framework: FPGA‑SoC with ISA‑aware generative model (LyraGen). Increases coverage by 27 % and speeds up verification 107–3343× vs software fuzzer.
  5. Semantic Analysis for Alzheimer’s Diagnosis – Pipeline to examine semantic cues in speech samples: syntax‑ and vocabulary‑transformed texts retain semantics, models can detect AD even with major structural changes.
  6. Recurrent Video Masked Autoencoders (RVM) – Recurrent transformer for spatio‑temporal video representations: efficient masked prediction, 30× parameter‑efficient compared to VideoMAE/V‑JEPA, stable feature propagation over long horizons.

How the Overview Works

– Hover tile shows abstract preview; click opens detail page.
– Sidebar filters enable search by category.
– Highlights progress in ML, Vision, AI and Hardware.

Related Queries

Welche Fortschritte wurden mit DiffusionBrowser bei der Interaktion mit Video‑Diffusion-Modellen gemacht?
Wie verbessert LitePT die Effizienz und Performance von 3D‑Point‑Cloud‑Netzwerken?
Welche Erkenntnisse liefert VTP hinsichtlich des Pretrainings von Visual Tokenizers für generative Modelle?

Source: https://www.weekinpapers.com/